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ABSTRACT
25–50 per cent of all white dwarfs (WDs) host observable and dynamically active remnant
planetary systems based on the presence of close-in circumstellar dust and gas and photospheric
metal pollution. Currently accepted theoretical explanations for the origin of this matter
include asteroids that survive the star’s giant branch evolution at au-scale distances and are
subsequently perturbed on to WD-grazing orbits following stellar mass-loss. In this work, we
investigate the tidal disruption of these highly eccentric (e > 0.98) asteroids as they approach
and tidally disrupt around the WD. We analytically compute the disruption time-scale and
compare the result with fully self-consistent numerical simulations of rubble piles by using
the N-body code PKDGRAV. We find that this time-scale is highly dependent on the orbit’s
pericentre and largely independent of its semimajor axis. We establish that spherical asteroids
readily break up and form highly eccentric collisionless rings, which do not accrete on to the
WD without additional forces such as radiation or sublimation. This finding highlights the
critical importance of such forces in the physics of WD planetary systems.

Key words: methods: numerical – celestial mechanics – minor planets, asteroids: general –
planets and satellites: interiors – protoplanetary discs – white dwarfs.

1 IN T RO D U C T I O N

The realization that the rocky material which pollutes white dwarf
(WD) atmospheres primarily originates from circumstellar debris
and not the interstellar medium (Kilic & Redfield 2007; Gänsicke
et al. 2008; Farihi, Jura & Zuckerman 2009; Jura et al. 2009;
Farihi et al. 2010) has revolutionized the study of evolved planetary
systems. Precise and extensive observations of metal abundances in
WD atmospheres (Zuckerman et al. 2003, 2010; Koester, Gänsicke
& Farihi 2014) suggest the presence of dynamically active systems.
This notion is reinforced by secure observations of orbiting dust
(Zuckerman & Becklin 1987; Farihi et al. 2012; Xu & Jura 2012)
and gas (Gänsicke et al. 2006, 2008; Gänsicke, Marsh & Southworth
2007; Debes et al. 2012b).

Whereas the presence of orbiting dust, and its approximate radial
distribution, is inferred from measurements of infrared excess lu-
minosity, the existence of gaseous material is instead inferred from
metal emission lines, in particular the Ca II triplet near 8600 Å. The
morphology of the emission line profiles reflect the velocity field
of the gas in motion around the WD (see Horne & Marsh 1986),
and thereby provide insight into the spatial distribution of the gas.
All of the gaseous system signatures so far discovered constrain the
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location of the matter to be within or around the WD tidal disruption
radius, at about one solar radius. The two best-studied systems ex-
hibit a noticeable asymmetry in the shape of the double-peaked line
profiles, suggesting eccentricities in the range 0.02–0.2 (Gänsicke
et al. 2006, 2008). In addition, in at least two cases, the shape and
strength of the emission lines vary between observations obtained
a few years apart, demonstrating evolution of at least the gaseous
component of the disc structure on relatively short time-scales (fig. 3
of Gänsicke et al. 2008; fig. 2 of Wilson et al. 2014).

The complex structure of the gaseous material highlights the dan-
gers of, and simply prove incorrect, assuming all material disrupted
around the WD forms a circular disc. What is clear is that for mul-
tiple systems, the material is within or around the tidal disruption
radius. Hence, these structures cannot have formed during earlier
stellar phases, because otherwise they would have resided inside of
the progenitor! How they formed during the WD phase remains an
outstanding question.

As a first step towards finding an answer, in this work, we con-
sider the disruption process of a rubble-pile asteroid around a WD
with help from the sophisticated N-body numerical code PKDGRAV

(Richardson et al. 2000; Stadel 2001). Although the tidal breakup
of rocky asteroidal material has previously been proposed (Graham
et al. 1990; Jura 2003; Bear & Soker 2013), the progenitors of these
discs could be comets, moons or planets. However, recent theoret-
ical work has favoured asteroids (Bonsor, Mustill & Wyatt 2011;
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Table 1. Time-scales used in this paper.

Time-scale Time-scale Equation
symbol name number(s)

tc Crossing or disruption (12), (14), (17)
Pω GR pericentre precession (19)
tfill Filling (25)
τ dyn Dynamical (26)
τ orb Orbital (27)
τ enc Encounter (28) and (29)
�t Simulation timestep (31)

Debes, Walsh & Stark 2012a; Frewen & Hansen 2014) primarily
due to the low frequency of planetary collisions with WDs (Veras
et al. 2013; Mustill, Veras & Villaver 2014) and the compositional
inconsistencies (Zuckerman et al. 2007) and dynamical difficulties
(Stone, Metzger & Loeb 2014; Veras, Shannon & Gänsicke 2014a)
of comet accretion; investigation of moons is needed. Henceforth,
we use the term asteroids to refer to any small bodies.

In the Solar system, asteroids are known to reside within several
tens of au of the Sun. Exo-asteroids at similar separations which
survive dynamical instabilities or tidal engulfment during the giant
branch phases of their parent stars will harbour wider orbits by a
factor of a few, and not be ejected due to mass-loss alone (Veras et al.
2011) even for particularly violent stellar structure assumptions
(Veras & Wyatt 2012). At a minimum, the asteroids need to reside
beyond about a couple of au to avoid engulfment into their star’s
giant branch envelope (Mustill & Villaver 2012). Therefore remnant
asteroids are expected to reside at distances between a few au and a
couple hundred au, and these asteroids can be flung towards the WD
only on extremely eccentric orbits. Here, we are unconcerned with
the dynamical architectures that would be necessary to propel the
asteroid to the WD in this manner (see Bonsor et al. 2011; Debes
et al. 2012a; Frewen & Hansen 2014) but rather focus entirely on
the disruption process.

This paper contains six sections, and introduces several time-
scales, which are summarized in Table 1 for ease of reference.
Section 2 establishes the location of the critical disruption sphere
and provides a link to the WD radius and mass. Section 3 describes
the orbit of an extremely eccentric asteroid with respect to the
critical disruption sphere. In Section 4, we analytically determine
the time-scale for forming an eccentric ring from the disruption.
We set up and run our numerical simulations of the disruption in
Section 5 before concluding in Section 6.

2 C R I T I C A L D I S RU P T I O N R A D I U S

We define disruption simply as a significant morphological change.
Both observations and theory provide strong insight into the critical
value at which disruption will occur. Nearly all known planetary
rings, which may have been formed from the disruption of asteroids,
are observed to orbit within a few planetary radii from the centre of
the planets. The rings around the Centaur Chariklo also lie within
a few asteroid radii from the centre of the asteroid (section 7 of the
supplement of Braga-Ribas et al. 2014). Force balance arguments
(e.g. Murray & Dermott 1999, p. 158) demonstrate that the critical
disruption radius rc has the dependences given by

rc ∝
(

MWD

M

)1/3

R, (1)

where MWD and M are the masses of the WD and asteroid and R is
a fiducial radius of the (not necessarily spherical) asteroid.

The proportionality constant is model dependent and is based on
the shapes, compositions, spin states, orbital states, and criteria used
for disruption. The constant may include functions of the tensile or
shear strengths of the asteroid (e.g. Davidsson 1999), and may
be determined from numerical simulations rather than analytical
considerations in order to be liberated from the assumptions of the
latter (Richardson, Bottke & Love 1998). The constant will change
depending on whether the asteroid is modelled to simply crack,
deform, or dissociate entirely. The disruption radius is famously
named after Edouard Roche, although his pioneering calculation
was based on just a single set of assumptions.

Because tidal disruption is a dynamic process that in reality can-
not be reduced to a simple critical radius criterion, our model makes
implicit assumptions. These are that the asteroid is roughly spheri-
cal, frictionless and not rotating, or rotating synchronously. These
assumptions may both overestimate and underestimate the disrup-
tion radius (e.g. Sridhar & Tremaine 1992; Asphaug & Benz 1994,
1996; Bottke, Richardson & Love 1997; Richardson et al. 1998;
Movshovitz, Asphaug & Korycansky 2012). Hence, our proceed-
ing treatment is an oversimplification. However, in order to obtain
analytical results, we adopt these assumptions for the remainder of
the manuscript.

For our purposes, a useful expression of the disruption radius is

rc

R�
= C

(
MWD

0.6 M�

)1/3 (
ρ

3 g cm−3

)−1/3

(2)

where C is a constant ranging from about 0.85 to 1.89 (Bear & Soker
2013), and ρ is the assumed density of the asteroid. The value of
0.6 M� may be considered as a fiducial WD mass given the mass
distribution of all observed WDs (Liebert, Bergeron & Holberg
2005; Camenzind 2007; Falcon et al. 2010; Tremblay et al. 2013).
Due to observational evidence that the vast majority of asteroids
have densities which satisfy ρ � 1 g cm−3 (table 1 of Carry 2012),
we find

max [rc (MWD)] ≡ rmax
c (MWD) ≈ 2.73

(
MWD

0.6 M�

)1/3

R�, (3)

where we have assumed the maximum value of C and minimum
value of ρ.

Further, by invoking the Chandrasekhar limit, which gives the
maximum WD mass (≡ MCh = 1.4 M�), the maximum value of
rmax

c (MWD) is rmax
c (MCh) = 3.6 R� = 0.017 au = 2.5 × 106 km.

This value is at least a few hundred times greater than the ra-
dius of the WD, which, for a typical WD mass of 0.6 M�, is
�0.015 R� (Hamada & Salpeter 1961; Holberg, Oswalt & Barstow
2012; Parsons et al. 2012). Equation (3) usefully demonstrates just
how small the disruption region is. Any asteroid whose disruption
we wish to model must eventually pass inside a sphere with a radius
of rc centred on the WD. Also, because the asteroid might collide
with the WD, we must compute RWD.

Both observations and theory demonstrate that mass alone does
not uniquely determine the extent of this surface; temperature is
another dependence (e.g. Panei, Althaus & Benvenuto 2000). If we
neglect this temperature dependence, then equations 27 and 28 of
Nauenberg (1972) link WD mass and radius through the following
relation

RWD

R�
≈ 0.0127

(
MWD

M�

)−1/3
√

1 − 0.607

(
MWD

M�

)4/3

, (4)
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where we have assumed a mean molecular weight per electron of 2
(Hamada & Salpeter 1961).

Another popular relation is from equation 15 of Verbunt &
Rappaport (1988).

RWD

R�
≈ 0.0114

√(
MWD

1.44 M�

)−2/3

−
(

MWD

1.44 M�

)2/3

×
[

1 + 3.5

(
MWD

0.00057 M�

)−2/3

+
(

MWD

0.00057 M�

)−1
]−2/3

.

(5)

Both relations produce nearly identical results, with a variation of
just a few per cent. Further, both relations reproduce well the latest
observational results within the error bars (fig. 4 of Bours et al.
2014).

The higher the WD mass, the smaller the WD radius, so that for
MWD < MCh, RWD > 6.4 × 10−4 R� ≈ 3.0 × 10−6au ≈445 km.1

A small number of WDs with very low masses, down to 0.17 M�
(e.g. Brown et al. 2013; Hermes et al. 2013) have been discov-
ered. They are all products of close binary interactions, and it
is currently not clear if these systems have any relevance in the
context of evolved planetary systems; we no longer consider low-
mass WDs for the remainder of the paper. For our calculations, we
adopt the canonical 0.6 M� mass, which corresponds to a value of
RWD = 0.0126 R� ≈ 8750 km from equation (4).2 Nevertheless,
we retain WD mass in all our formulae for future applications. In
order to express the critical disruption radius in terms of RWD, we
may combine equation (4) with equation (2). Overall, these rela-
tions show that disruption predominately occurs at a distance of
∼105–106 km (7 × 10−4–7 × 10−3 au) from the centre of the WD.

3 O R B I T C H A R AC T E R I S T I C S

Now that we have quantified the region that asteroids must pass
through for disruption to occur, we consider the asteroid orbits
themselves. The orbits are noteworthy because of their extreme
eccentricity. In fact, any asteroid with a semimajor axis a > 1
au (like the vast majority of Solar system asteroids) must have an
extremely eccentric (e > 0.983) orbit in order to achieve a pericentre
within the maximum possible disruption radius [rmax

c (MCh)]. This
section will provide detailed characteristics of this orbit, particularly
when the asteroid is within the disruption sphere.

3.1 The speed at pericentre

The speed of the asteroid at pericentre, vq, is remarkably high. If
the semimajor axis and pericentre of the asteroid’s orbit are denoted
by a and q, then

vq ≈ 23.1
km

s

(
MWD

0.6 M�

)1/2 ( a

1 au

)−1/2
(

1 + e

1 − e

)1/2

(6)

= 730
km

s

(
MWD

0.6 M�

)1/2 ( q

0.001 au

)−1/2 √
1 + e. (7)

1 For perspective, this extreme WD would rank fifth in size amongst the
Uranian satellites.
2 This WD would be just 37 per cent larger in radius than the Earth.

3.2 The range of interesting pericentres

Disruption can occur only when the pericentre is within rc. This
fact, along with our previous findings, allows us to quantify the
minimum (qmin) and maximum (qmax) pericentres we will consider
in this paper. Both qmin and qmax are expressed in terms of radius
and mass of the WD through equations (4) and (3), respectively.
Consequently,

qmax

qmin
= rmax

c (MWD)

RWD

≈ 254

(
MWD

M�

)2/3
[

1 − 0.607

(
MWD

M�

)4/3
]−1/2

, (8)

which yields a value of 217 for a WD mass of 0.6 M�.

3.3 Entering and exiting disruption sphere

The part of an asteroid’s orbit of the greatest interest, and the part
which we will model numerically, is the region inside of the dis-
ruption sphere. Suppose the given orbit is centred on a Cartesian
reference grid such that the star lies at the fixed position (ae, 0).
Without loss of generality, assume that the asteroid moves counter-
clockwise. Then the entry and exit points of the disruption sphere
along the orbit, assuming the orbit remains static through pericentre
passage, are

(xe, ye) =
(

a − rc

e
, ±1

e

√
(1 − e2)[2arc − r2

c − a2(1 − e2)]

)
.

(9)

The entry and exit distance, re, from the star is just re = rc, and
the speed at these entry and exit points, ve, is

ve ≈
√

GMWD

(
2

re
− 1

a

)

= 23.1
km

s

(
MWD

0.6 M�

)1/2 ( a

1 au

)−1/2
(

2 + e

2 − e

)1/2

. (10)

Equation (10) should be compared with equation (6). One then
observes in the limit of e → 1, for e > 0.983, we obtain

ve

vq

≈
√

3

2
(1 − e) < 16 per cent (11)

meaning that the pericentre velocity typically exceeds both the entry
and exit velocity by about one order of magnitude. This result show-
cases how drastically the asteroid’s velocity changes just within the
small disruption sphere even if no disruption occurs.

3.4 Time spent within the disruption sphere

The time spent within the disruption sphere, tc, will help us predict
how the extent of disruption is linked to a particular orbit. We
estimate this crossing time-scale by assuming the orbit remains
static. We obtain

tc = 2 |�e|
n

, (12)

where the mean motion, n ≈
√

GMWD/a3 (excluding the rela-
tively tiny mass of the asteroid), and the mean anomaly, �e,
at either the entry or exit point, is given by Kepler’s equation
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(�e = Ee − e sin Ee). The eccentric anomaly, Ee, at these points
is obtained from

cos Ee = 1

e

(
1 − rc

a

)
. (13)

Knowledge of tc is particularly important in order to effectively set
up numerical simulations.

Because the asteroid must not hit the WD and be within the
disruption sphere, we have RWD < q < rc. The time spent in the dis-
ruption sphere is equal to zero for q = rc and varies as q approaches
RWD, when the asteroid would be moving fastest (equation 6). We
can compute the maximum time by first rewriting tc as

tc = 2

√
a3

GMWD

×
{

cos−1

[
1 − rc

a

1 − q

a

]
−

√(
1 − q

a

)2
−

(
1 − rc

a

)2
}

. (14)

Consequently, the value of q which gives the maximum tc is

q ′ = a

[
1 −

√
1 − rc

a

]
(15)

and

max (tc) = tc
(
q ′) = sin−1

( rc

a

)
−

√
rc

a

(
1 − rc

a

)
. (16)

Fig. 1 quantifies these equations for a fiducial WD with
MWD = 0.6 M�. Note that how steeply the time spent in the disrup-
tion sphere decreases as a function of q after the maximum value
is attained at q′. The plot demonstrates that for a fixed value of
q, the time spent in the disruption sphere is nearly independent of
a except for a � 0.1 au. Importantly then, we expect the disrup-
tion characteristics to be independent of a for all semimajor axes
which could survive engulfment on the giant branch phases of stellar
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t c
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Time spent in disruption sphere for rc 4 10 3 au

MAX q q’ 2.0 10 3 au

q 1.0 10 3 au

q 3.2 10 3 au

q 3.5 10 3 au

q 1.0 10 5 au

Figure 1. Time an asteroid spends per orbit in a spherical region around
a 0.6 M� WD where disruption can occur. The value of tc is crucially
dependent upon the pericentre q but almost independent of the semimajor
axis a of the asteroid’s orbit. These curves assume a disruption sphere radius
of rc = 4 × 10−3 au. The top curve shows the peak value of the disruption
time (equation 18).
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Figure 2. Like Fig. 1, except the crossing time here is plotted as a function
of the pericentre q for four different disruption spheres with radii rc. The
maximum possible value of rc for a 0.6 M� star is max[rc] ≈ 2.73 R�
(0.013 au), and arises from equations (2) and (3), where the unknown pa-
rameters are C and ρ. These curves do not visibly change when a is varied
beyond about 0.1 au. The peak of each curve occurs approximately halfway
between the centre and edge of the sphere, as can be deduced by Taylor
expanding equation (15) about small values of rc/a.

evolution. The value of tc which satisfies nearly all relevant values
of a is

lim
a→∞ [tc] = 2

√
2

3
√

GMWD

[
r2

c + qrc − 2q2

√
rc − q

]
(17)

with the maximum of these values occurring at

lim
a→∞

[
tc

(
q ′)] = 4

3

√
r3

c

GMWD
, (18)

which is a factor of 3/(2π) times the orbital period of an object that
travels along the disruption boundary.

Now we consider the distribution of tc within the sphere as a func-
tion of q. Fig. 2 illustrates the result, and that the maximum crossing
time does not occur at the WD surface. The reason is because the
asteroid is moving the fastest when skimming the surface.

Instead, the maximum disruption or crossing time occurs at
q ≈ rc/2, which is equivalent to the result of Taylor expanding
equation (15) about small values of rc/a. Note that the asymmetry
in the curves; the disruption time-scale always exceeds 70 per cent
of the maximum value unless q � 0.87rc. Therefore, as long as the
pericentre is not close to the edge of the disruption sphere, the dis-
ruption crossing time is approximately constant. In conclusion, the
time spent within the disruption radius is typically a few thousand
seconds.

Within the disruption radius, the internal changes the asteroid
undergoes are complex and may be strongly dependent on our as-
sumptions of sphericity, frictionlessness and no spin. For example,
as observed by Movshovitz et al. (2012), the size distribution of the
granular constituents of a real asteroid will affect the relationship
between confining pressure and the maximum allowed shear stress.
Consequently, disruption may occur within a region other than a
sphere, in which case our value of tc would have to be modified.
Further, the shape of the disruption region might change as the
asteroid is passing through and changing its own shape and/or spin.
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Regardless, as illustrated by equation (14) and Fig. 1, the total time
spent at a pericentre passage is largely independent of the orbit’s
semimajor axis. This result is independent of the detailed internal
dynamical interaction which occurs at the pericentre.

3.5 Contribution from general relativity

As the asteroid approaches the WD, the star will curve spacetime,
thereby altering the trajectory of the asteroid from the Newtonian
value. Here, we evaluate this contribution, showing it to be neg-
ligible along individual orbits but not necessarily so over secular
time-scales.

For a single nearly parabolic orbit, Veras (2014) showed that the
maximum deviation at the pericentre of a 0.6 M� star is approx-
imately equal to 2.6 km. When compared with the radius of our
adopted WD (8750 km), the extent of the disruption sphere (105–
106 km), and the error induced by taking the limit of large a in
computations (see Fig. 1), this correction is negligible. However, he
points out that as q remains fixed as a increases, the approximation
get worse, such that for a = 105 au and q = 0.1 au, the error in the
estimation is of order unity. Nevertheless, this error is still negligi-
ble, and that situation is more relevant for long-period comets than
for asteroids.

Over many orbits, general relativity will torque the asteroid’s
argument (or longitude) of pericentre. This angle will precess over
one complete orbit in a time Pω, where

Pω ≈ 0.15 Myr

[
1 − e2

1 − 0.9992

] (
MWD

0.6 M�

)−3/2 ( a

1 au

)5/2
. (19)

Therefore, a precession of a few degrees may occur on thousand-
year time-scales, which correspond to a few tens of orbits for suffi-
ciently far-away progenitors. Consequently, general relativity would
enhance the possibility of collisions amongst debris which is flung
out to different semimajor axes. We will consider this possibility,
particularly with the disruption of multiple asteroids, in future work.

4 EC C E N T R I C R I N G FO R M AT I O N
TIME-SCALE

Before performing numerical simulations, we can make theoretical
predictions about disrupted debris. In particular, we predict that the
debris will form an eccentric ring which follows the original orbit.
Below we estimate the time-scale for formation of this eccentric
ring. The extent of the agreement with numerical integrations will
help investigators determine the usability of the theoretical model
in future studies.

Our treatment follows the formulation presented by Hahn & Ret-
tig (1998), which agreed well with numerical simulations of the
disruption of comet Shoemaker–Levy 9. Here, suppose our asteroid
is composed of many point mass particles. Later, in our numerical
simulations (next section), these particles will adopt non-zero radii.
Let all variables with subscript ‘P’ refer to a specific but arbitrary
particle. Variables without subscripts refer to the asteroid. In what
follows, assume that the breakup is instantaneous and occurs at
rb, and that the particles evolve independently of each other (are
collisionless) immediately after the breakup. Our formulation is
independent of both re and rc.

All particles will move with the same velocity before the asteroid
breaks up. Hence,

v2
P = v2 = G (MWD + M)

(
2

rb
− 1

a

)
. (20)

By conservation of energy,

− GMWDMP

2aP
= 1

2
MPv

2
P − GMWDMP

rP
, (21)

which gives

aP = arbrP(
M

MWD

)
rP (rb − 2a) + 2a (rb − rP) + rbrP

. (22)

When rP = rb, that particle continues along the asteroid’s original
elliptic orbit. When rP < rb, that particle will have an elliptical orbit.
When rP > rb, that particle can harbour an elliptical, parabolic or
hyperbolic orbit. For this last case, consider equation (22). Proper-
ties of conic sections dictate that the distance at which the particle’s
orbit becomes parabolic is

rcrit = 2arb(
1 + M

MWD

)
(2a − rb)

≈ 2arb

2a − rb
(23)

such that the particle’s orbit remains elliptical if rP < rcrit or becomes
hyperbolic if rP > rcrit. Note that for asteroids around WDs, we
can assume M/MWD ≈ 0 because that ratio is about 10 orders of
magnitude smaller than any ratio of relevant length-scales in this
problem.

The velocity gradient between bound debris will fill out a ring.
The initial spatial distance between the bound debris will determine
the formation time-scale. This distance can be up to the entire
asteroid diameter, or at minimum the asteroid radius, as all particles
between the asteroid centre and the closest point to the WD must
remain on bound orbits. The value of rcrit determines whether or not
all of the particles will remain on bound orbits. Consequently, the
debris will fill an entire orbit in a time

tfill = 2π

n(rp = rb − R) − n(rp = rb + min(rcrit − rb, R))
. (24)

If tfill is expressed in terms of the asteroid’s (original) orbital period
(T), then we finally obtain

tfill

T
= n(rp = rb)

n(rp = rb − R) − n(rp = rb + min(rcrit − rb, R))

= r
3/2
b

[{
r2

b + 2aR − rbR

rb − R

}3/2

−
{

r2
b − 2a × min(rcrit − rb, R) + rbmin(rcrit − rb, R)

rb + min(rcrit − rb, R)

}3/2]−1

.

(25)

This formula (equation 25) allow us to generate eccentric disc
formation time-scales purely analytically. The results are presented
in Figs 3–5 for our fiducial 0.6MWD WD with rc = 0.017 au (see
equation 3). Fig. 3 illustrates the time-scale in terms of years (upper
panel) and original orbital periods (lower panel) for five different
combinations of the disruption location rb and the original asteroid
radius R as a function of a. The top (blue) curves represent the
maximum possible filling time for a 1 km asteroid, which is several
orders of magnitude less than a WD cooling time of 1 Gyr. At the
other extreme, disruptions where the asteroid skims the WD surface
will fill out an eccentric ring with debris in a couple months. Note
that the curves in the bottom panel level out beyond a particular
semimajor axis value, one that increases with disruption location
and decreases with asteroid radius.

Figs 4 and 5 instead highlight the dependence on the disruption
distance as a function of both RWD and R, by placing those values
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0.1 1 10 100 1000 104 105
10 8

10 5

0.01

10

104

a au

t
T

Formation timescale of eccentric rings: a dependence

rb rc, R 1 km
rb rc 10, R 0.1 km
rb rc 10, R 1 km
rb rc 10, R 10 km
rb RWD, R 1 km

0.1 1 10 100 1000 104 105

0.1

10

1000

105

a au

t
y
ea
rs
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Figure 3. Time which debris takes to fill an eccentric thin ring after an
instantaneous disruption of an asteroid at a distance rb from a WD of mass
0.6 M�. The asteroid’s original radius and original orbital semimajor axis
are R and a, and rc = 0.017 au. The top and bottom panels express filling time
in terms of orbital period T and in years, respectively. The plots demonstrate
that the formation time-scale is highly dependent on rb, R and a.

on the x-axes. Fig. 4 suggests that any asteroids thrown in from an
exo-asteroid belt (at ≈5 au) or an exo-Kuiper belt (at ≈30 au) which
reach pericentre values within 10RWD will fill out an eccentric ring
within about 100 yr. Fig. 5 further illustrates that the formation
time-scale is also strongly dependent on the asteroid’s radius. Here,
the x-axis extends to values of 1000 km, which is roughly twice
the value of the radius of the largest known asteroid (Ceres) and is
comparable to that of small planets.3

As previously mentioned, the results in this section are dependent
on the assumption that the breakup is instantaneous and thorough,
such that post-breakup, all particles will evolve independently of
one another. Our numerical simulations, which are reported in the

3 Veras et al. (2013) and Mustill et al. (2014) specifically considered how
dynamical instabilities in multiplanet systems may cause a collision with a
WD and a planet.
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Figure 4. Like Fig. 3, except highlighting the dependence on the disruption
distance. For all combinations presented here, when disruption occurs within
10RWD, the ring will form within about 100 yr.
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Figure 5. Like Fig. 3, except highlighting the dependence on the radius of
the asteroid. The plot shows that any asteroids with R > 1 km which skim
the WD surface will fill out a ring within a couple months. Also, this plot
demonstrates that the filling time has a weak dependence on the semimajor
axis of the orbit for constant R.

next section, show that the breakup is never strictly instantaneous.
Rather, clumps of particles remain bound for more than one peri-
centre passage. As the pericentre of the orbit increases, our as-
sumptions break down further, as the clumps become larger and
are more strongly bound. Hence, the formulae here are best suited
for close pericentre passages. Further, because our final formula
(equation 25) is independent of particle mass or size, the formula
should be applicable to asteroids with different particle size distri-
butions as long as the extent of clumping for these rubble piles is
negligible. These distributions may be significantly influenced, or
even primarily determined, by destructive processes occurring dur-
ing the star’s giant branch evolutionary phases (Veras, Jacobson &
Gänsicke 2014b).
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5 N U M E R I C A L S I M U L AT I O N S

Now we complement our theoretical predictions with numerical
simulations of a rubble-pile asteroid. Here, we describe the code
used, the internal structure of the rubble piles that are modelled, the
timestep adopted, and finally our simulation results. Our discussion
of the timestep adopted may be widely applicable to other similar
N-body codes.

5.1 Numerical disruption code

We use a similar modified version of the well-established N-body
gravity tree code PKDGRAV (Stadel 2001) that Debes et al. (2012a)
employ to study asteroid disruption around WDs during a single
pericentre passage. The major modification is the ability to detect
and resolve collisions (Richardson et al. 2000). For our simulations,
the N bodies are equal-mass and equal-radius particles which ini-
tially comprise a single gravitational aggregate known as a rubble
pile (although the code is flexible enough to handle interactions
between multiple rubble piles; see Leinhardt, Richardson & Quinn
2000). As the rubble pile becomes disrupted, the particles’ motion
is consistently treated by the code. The WD, or any parent star, may
be introduced into the code, but is not treated as one of the N bodies.
Instead, the WD is treated as a gravitational point mass (with zero
radius). Hence employing a realistic mass–radius relation (equa-
tion 4) in the setup is crucial so that orbits do not pass through a
region where the WD should reside.

The integrator used is a second-order leapfrog integrator, which
is symplectic in the absence of collisions. For a more extensive
discussion on the properties of this integrator, see Richardson et al.
(2000).

5.2 Rubble-pile characteristics

The number of particles and their bulk shape might significantly af-
fect the details of disruption (e.g. Richardson et al. 1998). Here, we
consider only roughly spherical rubble piles of 5000 particles, with
two different internal structures. One structure consists of hexag-
onally packed particles, and the other randomly packed particles
(see Fig. 6). We find, in concert with previous studies which use
PKDGRAV, that our choice of rubble-pile configuration makes no dis-
cernibly important difference in the outcome of our simulations.
Consequently, we henceforth report results from only our randomly
packed rubble-pile simulations. We adopt an asteroid mass of about
2.26 × 1014 kg. The semi-axes of the rubble pile are about 3.25,
3.05 and 2.99 km, yielding a bulk density of about 1.82 g cm−3.
The spins of all of the particles are randomly oriented.

Figure 6. Rubble-pile asteroids, each composed of about 5000 indestruc-
tible hard spheres that we denote as particles. Asteroid A is hexagonally
packed, and asteroid B is randomly packed. Disruption is very weakly de-
pendent of the packing method as long as the asteroid is roughly spherical.

5.3 Timesteps

We use a fixed timestep in our simulations. Determining the appro-
priate value of this timestep is crucial to ensure numerical conver-
gence and accurate results. To guide our intuition for the correct
value to adopt, we take note of five applicable time-scales. The first
is the dynamical time-scale

τdyn ∝ 1√
Gρ

. (26)

For asteroids, τ dyn ∼ 1 h. Previous investigations using PKDGRAV

(e.g. Leinhardt & Richardson 2002) demonstrate that adopting a
timestep �t which is about two orders of magnitude smaller than
τ dyn (�t ≈ 50 s) sufficiently resolves the collisions amongst the
particles in a rubble pile.

The second time-scale is the orbital time-scale

τorb = 2πa3/2

√
GMWD

. (27)

The orbital time-scale of every known asteroid, comet or planet
exceeds 1 h by several orders of magnitude. Hence, typically,
τ orb � τ dyn. In symplectic simulations of point mass planets orbit-
ing a star, a well-utilized rule of thumb is �t ≤ (1/20)τ orb (Duncan,
Levison & Lee 1998).

The third time-scale is simply the disruption sphere crossing
time-scale, tc. We must ensure that the rubble pile is sufficiently
sampled within the disruption sphere. So either the disruption sphere
crossing time-scale or the dynamical time-scale dictates the limiting
timestep. However, there is one more consideration.

The fourth time-scale is the encounter time-scale

τenc ≈ q

vq

=
√

q3

GMWD

(
2 − q

a

)−1/2
(28)

≈ 205s

(
MWD

0.6 M�

)−1/2 ( q

0.001 au

) 1√
1 + e

, (29)

which is the time-scale for gravitational interaction at the closest
approach distance.

Except near the edge of the disruption sphere, τ enc < tc. However,
we can obtain a more meaningful comparison by taking the ratio of
these two time-scales. The value of (tc/τ enc) is well approximated
at all relevant values of a by

lim
a→∞

(
tc

τenc

)
= 4

3

[
r2

c + qrc − 2q2

q3/2
√

rc − q

]
, (30)

which monotonically decreases as q shifts from RWD to rc, and
hence takes on a maximum value at q = RWD. This ratio is plotted
in Fig. 7. The figure demonstrates that the timestep restrictions near
the WD surface are demanding. Adopting the dynamical time-scale
constraint of �t ≈ 50 s will fail to sufficiently resolve the encounter
within a few RWD for the lowest mass WDs, and within tens of RWD

for the highest mass WDs.
The fifth time-scale is the collision time-scale, τ col, which repre-

sents the ratio of a characteristic interparticle distance to the relative
velocities of the particles. Because the minimum possible size of a
particle orbit is the diameter of the WD, and the particles orbit in
the same direction around the WD after disruption, for our purposes
τ col > τ dyn always.

Finally, these considerations lead us to adopt the following time-
scale for each of our simulations

�t = min

(
50s,

tc

20
,

τenc

30

)
. (31)
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Figure 7. Demonstration that timestep sampling within the disruption
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effect is particularly pronounced for pericentres within a few WD radii,
and is a strong function of rc. The solid, dashed and dotted lines refer to
q = 1, 10, 100RWD. Visual changes of these curves when sampling different
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0 1 3 5 10 30 50

0.2
0.3
0.5

1

2
3
5

10

20
30

q qmin

qmax qmin

t
s

Maximum integration timestep

MWD 0.2M

MWD 0.6M

MWD 1.0M

MWD 1.4M

Nearly independent of a

Figure 8. Maximum numerical integration timestep �t as a function of
pericentric distance. Values of qmin and qmax are given by equation (8). This
plot illustrates that for the most relevant disruption region, within the inner
half of the disruption sphere, the required timestep is always less than the
dynamical timestep of 50 s.

The factor of 30 in the last denominator arises from our preliminary
simulation suite. We discovered that for higher timesteps, the accu-
mulated error over tens of orbits noticeably alters the argument of
pericentre of the orbit.

Because the value of �t crucially affects the CPU running time
of our simulations, we now quantify how �t varies with a and q.
Fig. 8 illustrates this dependence, where we have used equations
(14) and (28) to compute tc and τ enc, with rc given by equation (3).
Although its dependence on a is negligible and dependence on MWD

is weak, �t is less than the dynamical time-scale of 50 s for over
half of the distance from qmin to qmax.

5.4 Simulation results

We seek to answer three important questions from our simulation
results: (1) Do rubble piles actually form highly eccentric rings, as
has been theorized? (2) If so, what is the collisional nature of the
rings? (3) What is the time-scale to fill out the rings with rubble?

5.4.1 Qualitative answers to these questions

Our simulations show that highly eccentric structures are indeed
formed, and are filled-in over time in the rough shape of a ring.
Deviations from a perfect filled ring are due to the chaotic nature of
the non-instantaneous dissociation of thousands of mutually inter-
acting particles and the amount of material (or number of particles)
inside of the asteroid. These deviations take the form of arcs which
are void of particles, and brakes in the shape of the annulus itself.
The distortion of the shape becomes pronounced only within a few
WD radii.

Importantly, our disrupted asteroid eventually completely disso-
ciates in all cases. Accordingly, each particle eventually orbits the
WD without being influenced by any other particle. The result is a
collisionless collection of particles, each of which propagates ac-
cording to the classic two-body problem. Gravity alone cannot cause
accretion. They will never accrete on to the WD unless influenced
by other forces. The addition of other forces, such as radiation from
the WD and non-gravitational forces from sublimation, are topics
for future work. The time-scale at which complete dissociation oc-
curs is a strong function of the initial conditions and particularly
the pericentre. Further, complete dissociation is a conservative no-
tion. We have found that well before this condition is satisfied, the
particles are effectively collisionless, with just a few two-particle
clumps hanging on for the same amount of time that is taken for the
rest of the asteroid to dissociate.

5.4.2 Simulation details

Our simulations were carefully chosen to both showcase important
behaviour and finish running on plausible time-scales (∼1 month).
The duration of the simulations is severely limited by a timestep
which is tiny (see Fig. 8) compared to typical numerical simulations
of planetary systems. Consequently, any simulations with semima-
jor axes of more than a few tenths of an au and a pericentre beyond
a few WD radii would require over one month in real time to model
a single orbit with PKDGRAV. Fortuitously, time spent in the disrup-
tion sphere is very weakly dependent on semimajor axis (Fig. 1),
allowing us to adopt a = 0.2 au and hence model tens of orbits self-
consistently with our code. The choice of 0.2 au is motivated only
by computational limitations. In reality, no asteroid should exist in a
WD system on an a = 0.2 au orbit. Rather, asteroids should harbour
semimajor axes greater, or much greater, than 1 au, but fortunately,
the problem scales extremely well for semimajor axes greater than
0.1 au (e.g. Fig. 1).

We display results from two of our simulations in the form of
snapshots in Figs 9 and 10. These simulations have values of
(q − qmin)/(qmax − qmin) of 10 and 5 per cent, respectively. The
constant timesteps adopted for the simulations were about 7.356
and 2.772 s, respectively, in close accordance with Fig. 8. Hence,
the number of steps required to complete one original orbital period
were approximately 495 000, and 1314 000. The original eccen-
tricities of the orbits are about 0.9934 and 0.9966. The simulations
assume a WD mass of 0.6 M�. The asteroids all begin their motion
at �0 = −48.◦96, a value which affords a ‘lead-in’ time of tc to
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Figure 9. The evolution of a disrupted rubble pile after No orbits when No ≈ 20 (left-hand panels) and No ≈ 100 (right-hand panels) from the PKDGRAV

numerical code. Snapshots in equal time increments of about 0.202 orbits are displayed from top to bottom. The motion is counterclockwise around the WD,
which is denoted with a blue cross and set at the origin. Although the simulations here have a = 0.2 au, the qualitative evolution is self-similar for greater
orbital distances because the disruption characteristics are largely independent of semimajor axis for a � 0.1 au. In reality, a > 1 au; the value of a = 0.2 au
was chosen entirely for computational reasons. The plot illustrates the speed at which an eccentric debris ring fills out when the orbital pericentre q satisfies
(q − qmin)/(qmax − qmin) = 10 per cent.

the disruption sphere, where tc is computed according to the orbit
which skims the WD.

Figs 9 and 10 illustrate how disruption typically forms an arc of
material (similar to the stream in fig. 5 of Debes et al. 2012a) which
gradually expands into a ring. The expansion is due to the velocity
gradient of the particles. These velocities are determined by their
last combined interaction with both the WD and another particle
just before dissociation from that particle. This process does not
reproduce a continuous and uniform velocity distribution because

the disruption is not instantaneous. Nevertheless, the approximation
used in Section 4 and Figs 3–5 correspond well with the simulation
results: for a = 0.2 au, and assuming that the disruption of a roughly
3 km-radius asteroid occurs at the pericentre, the fill-out time is
expected to be a few tens to a couple hundred orbits. For semimajor
axes of a few au, the fill-out time would then correspond to tens or
hundreds of years.

By focusing on the middle of the figures, one can visually dis-
cern a slight artificial precession of the ellipse due to accumulated
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Figure 10. Similar to Fig. 9, except for (q − qmin)/(qmax − qmin) = 5 per cent. Here, the left- and right-hand panels show the disrupted rubble pile for No ≈ 6
and 45, respectively, demonstrating that the rings fill out more quickly than in Fig. 9. Snapshots in equal time increments of about 0.183 orbits are displayed
from top to bottom.

numerical error (despite our conservative timesteps). This preces-
sion, which is not due to the general relativistic precession (equa-
tion 19) is about twice as prominent in the right-hand column of
Fig. 9 than in Fig. 10 partly due to the former being run for about
twice as many orbits.

Finally, in order to test the robustness of our results against the
resolution of our rubble piles, we have performed additional sim-
ulations with rubble piles which contain nearly 1000 and 10 000
particles. In each case, we performed simulations with (q − qmin)/
(qmax − qmin) values of 10 and 5 per cent. We find that like in

the 5000-particle case, (1) highly eccentric collisionless rings are
formed, and (2) greater resolution (number of particles) improves
the homogeneity of the resulting ring that is formed. More particles
help fill in gaps in the ring. We have also repeated our 1000-particle
case using both of the above q values but a different tangential
coefficient of restitution (0.5, instead of 1.0). The results were qual-
itatively similar.

Recent work featuring a higher level of sophistication in the
modelling of tidal disruption (e.g. Movshovitz et al. 2012; Yu et al.
2014) showcases potential future directions for follow-up studies. In
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these cases, particles are idealized not as indestructible hard spheres,
but rather as soft spheres (Schwartz, Richardson & Michel 2012).
In the soft sphere discrete element method, rolling and twisting
friction may be incorporated between particles, and particles may
share multiple points of contact. Particles also need not be modelled
as spheres (Movshovitz et al. 2012); instead use irregular, polyhedral
grains.

6 SU M M A RY

We have investigated an important step in the process of polluting
WDs with circumstellar material: the tidal disruption of bound as-
teroids which veer into the WD’s Roche radius. We conclude that
while an initially spherical asteroid perturbed on to an eccentric
orbit may be tidally disrupted by a WD to form a highly eccentric
ring of debris, this ring is collisionless without the influences of
additional perturbative forces. Without these forces, the disrupted
asteroid will not accrete on to the WD, importantly demonstrating
that gravity alone is insufficient to produce WD pollution. These
results motivate future investigations which would detail how ec-
centric collisionless rings can form a close-in circumstellar disc
(with the approximate dimension of the disruption radius), from
where the debris eventually accretes on to the WD.

Although this paper considered the disruption of just a single
asteroid, multiple asteroids could arrive at the WD’s disruption
radius in quick succession, as the co-orbital fragments of comet
Shoemaker–Levy 9 did at Jupiter. Consequently, the filling time for
a ring will decrease. The resulting filling time-scale depends upon
the number of tidally disrupted asteroids and the relative orientations
of the incoming objects, but not their masses (see discussion after
equation 25). The masses will determine the extent and number of
the gaps in the ring, causing it to appear as a series of loosely or
strongly connected arcs. If the incoming objects are not initially
co-orbital, then they will be disrupted at different pericentres, and
instead form a series of rings akin to the ring system of a giant outer
Solar system planet. A packed collection of rings may be classified
as a disc.

Our more specific findings include a characterization of the in-
terplay between the extremely eccentric orbits of these asteroids
and the WD’s Roche radius (Section 3). Consequently, we conjec-
ture that the characteristics of disruption is largely independent of
semimajor axis (Fig. 1), and highly dependent on the pericentre
(Fig. 2 and equation 17). Our work has revealed that the debris
follows the original orbit, first as a short arc and then later as a full
ring after a time given by equation (25) and Figs 3–5. Numerical
simulations with the rubble-pile integrator PKDGRAV disclose that the
debris does not uniformly fill out the ring (Figs 9 and 10). To prevent
significant artificial precession due to accumulated numerical error,
the required maximum timesteps for these types of simulations are
extreme, often of the order of 1 s (equation 31).
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